
CSCI 210: Computer Architecture

Lecture 33: Caches II

Stephen Checkoway

Slides from Cynthia Taylor

1

CS History: Jerry Lawson

• Born in Brooklyn in 1940

• “Father of the video game
cartridge”

• Worked at Fairchild Semiconductor

• Developed the swappable video
game cartridge

• Member of the Homebrew
Computer Club
– Interviewed Steve Wozniak for a

position at Fairchild and didn’t hire
him

Museum of Play / Estate of Jerry Lawson

CACHE REPLACEMENT POLICIES

Cache Misses for loads

• On cache hit, CPU proceeds normally

• On cache miss

– Stall the CPU pipeline

– Fetch block from next level of hierarchy

– Instruction cache miss

• Restart instruction fetch

– Data cache miss

• Complete data access

Cache replacement policy

• On a hit, return the requested data

• On a miss, load block from lower level in the memory hierarchy
and write in cache; return the requested data

• Policy: Where in cache should the block be written? (With
direct-mapped caches, there’s only one possible location:
block_address % number_of_blocks_in_cache)

Cache policy for stores

• Policy choice for a hit: Where do we write the data?
– Write-back: Write to cache only

– Write-through: Write to cache and also to the next lower level of the
memory hierarchy

• Policy choice for a miss
– Write-allocate: Bring the block into cache and then do the write-hit

policy

– Write-around: Write only to memory

Store-hit policy: write-through

• Update cache block AND memory

• Makes writes take longer
– e.g., if base CPI = 1, 10% of instructions are stores, write to memory takes 100

cycles
• Effective CPI = 1 + 0.1×100 = 11

• Solution: write buffer
– Holds data waiting to be written to memory
– CPU continues immediately

• Only stalls on write if write buffer is already full

Store-hit policy: write-back

• Only update the block in cache

– Keep track of whether each block is “dirty”
(i.e., it has a different value than in
memory)

• When a dirty block is replaced
(“evicted”)

– Write it back to memory

– Can use a write buffer

• Faster than write-through, but more
complex

V D Tag Data

1 0 000042 FE FF 3C …

0

1 1 001234 65 82 5C …

0

0

1 0 000F3C 00 00 00 …

0

0

What value(s) will we eventually write to memory at
address 0xFFFF1234? Assume a write back cache,
and the cache block for 0xFFFF1234 is not evicted

until after the three writes
A. 4

B. 5

C. 6

D. We will write 4, then overwrite it
with 5, then overwrite that with 6

E. None of the above

sw $t1, 0($t3)
sw $t2, 0($t3)
sw $t4, 0($t3)

$t3 holds 0xFFFF1234
$t1 holds 4
$t2 holds 5
$t4 holds 6

Write-Back Policy:
Only update the block in cache
When a dirty block is evicted write it
back to memory

Store-miss policy: write-around

• Only write the data to memory

• Good for initialization where lots of memory is written at once
but won’t be read again soon

Store-miss policy: write-allocate

• Read a block from memory into the cache (just like a load miss)

• Perform the write according to the store-hit policy (i.e., write in
cache or write in both cache and memory)

• Good for when data is likely to be read shortly after being
written (temporal locality)

Store Policies
• Given either high store locality or low store locality, which policies might you

expect to find?

• Write-allocate: create block in cache. Write-around: don’t create block.
Write-through: update cache + memory. Write-back: update cache only.

Selection

High Locality Low Locality

Miss Policy Hit Policy Miss Policy Hit Policy

A Write-allocate Write-through Write-around Write-back

B Write-around Write-through Write-allocate Write-back

C Write-allocate Write-back Write-around Write-through

D Write-around Write-back Write-allocate Write-through

E None of the above

Common policy choices

• Write-back + write-allocate

– Dirty blocks are written to memory only when replaced

– Stores bring block into cache

– Subsequent loads/stores will cause cache hits (unless the block is
evicted)

• Write-through + write-around

– Writes always go to memory

– Cache is mostly for loads

ASSOCIATIVE CACHES

Direct-mapped Cache

• Each block goes into 1 spot

• Only search one entry

• Associativity = 1

• What if we allow blocks to go
into more than one spot?

Fully-associative Cache

• Allow a given block to go in any
cache entry

• Requires all entries to be
searched at once

• Comparator per entry
(expensive)

n-way Set-associative Cache

• Each set contains n entries

• Block number determines which set

– (Block address) modulo (#Sets in cache)

• Search all entries in a given set at once

• n comparators (less expensive)

Spectrum of associativity for 8-entry cache

Memory addresses, block addresses, offsets

• Block size of 32 bytes (not bits!)

• 16-block, 2-way set associative cache

• Each address
– A (32 – 5)-bit block address (in purple and

blue)

– A 5-bit offset into the block (in green)

• Block address can be divided into
– A (32 – 3 – 5)-bit tag (purple)

– A 3-bit cache index (blue)

0 0 0 1 0 1 0 1 1 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 0 0 1 1

V Tag Data V Tag Data

0 0

0 0

0 1 3F2084 …

0 0

0 0

1 15C9AC … 1 28477D …

0 0

0 0

Set Associative Cache Organization

Given a 256-entry, 8-way set associative cache with a block size
of 64 bytes, how many bits are in the tag, index, and offset?

Tag bits Index bits Offset bits

A 32 – 5 – 6 = 21 5 6

B 32 – 3 – 5 = 24 3 5

C 32 – 8 – 6 = 18 8 6

D 32 – 6 – 5 = 21 6 5

E 32 – 6 – 3 = 23 6 3

Given a 256-entry, fully associative cache with a block size of 64
bytes, how many bits are in the tag, index, and offset?

Tag bits Index bits Offset bits

A 32 – 5 – 6 = 21 1 6

B 32 – 3 – 5 = 24 3 5

C 32 – 8 – 6 = 18 8 6

D 32 – 6 – 5 = 21 6 5

E 32 – 0 – 6 = 26 0 6

Replacement Policy

• Direct mapped: no choice

• Set associative
– Prefer non-valid entry, if there is one
– Otherwise, choose among entries in the set
– Goal: Choose an entry we will not use in the future

Replacement Policy

• Least-recently used (LRU)
– Choose the one unused for the longest time

• Simple for 2-way, manageable for 4-way, too hard beyond that

• Random
– Gives approximately the same performance as LRU for high

associativity

Associativity Example

• Compare 4-block caches

– Direct mapped, 2-way set associative, fully associative

– Block access sequence: 0, 8, 0, 6, 8

• Direct mapped

Block

address

Cache

index

Hit/miss Cache content after access

0 1 2 3

0 0

8 0

0 0

6 2

8 0

Associativity Example: 0, 8, 0, 6, 8

• 2-way set associative
Block

address

Cache

index

Hit/miss Cache content after access

Set 0 Set 1

0 0

8 0

0 0

6 0

8 0

◼ Fully associative
Block

address

Hit/miss Cache content after access

0

8

0

6

8

Reading

• Next lecture: More Caches!

– Section 6.4

28

	Slide 1: CSCI 210: Computer Architecture Lecture 33: Caches II
	Slide 3: CS History: Jerry Lawson
	Slide 4: Cache replacement policies
	Slide 5: Cache Misses for loads
	Slide 6: Cache replacement policy
	Slide 7: Cache policy for stores
	Slide 8: Store-hit policy: write-through
	Slide 9: Store-hit policy: write-back
	Slide 10: What value(s) will we eventually write to memory at address 0xFFFF1234? Assume a write back cache, and the cache block for 0xFFFF1234 is not evicted until after the three writes
	Slide 11: Store-miss policy: write-around
	Slide 12: Store-miss policy: write-allocate
	Slide 13: Store Policies
	Slide 14: Common policy choices
	Slide 15: Associative Caches
	Slide 16: Direct-mapped Cache
	Slide 17: Fully-associative Cache
	Slide 18: n-way Set-associative Cache
	Slide 19: Spectrum of associativity for 8-entry cache
	Slide 20: Memory addresses, block addresses, offsets
	Slide 21: Set Associative Cache Organization
	Slide 22
	Slide 23
	Slide 24: Replacement Policy
	Slide 25: Replacement Policy
	Slide 26: Associativity Example
	Slide 27: Associativity Example: 0, 8, 0, 6, 8
	Slide 28: Reading

