CSCI 210: Computer Architecture
Lecture 33: Caches Il

Stephen Checkoway
Slides from Cynthia Taylor

CS History: Jerry Lawson

.....

Museum of Play / Estate of Jerry Lawson

Born in Brooklyn in 1940

“Father of the video game
cartridge”

Worked at Fairchild Semiconductor

Developed the swappable video
game cartridge

Member of the Homebrew
Computer Club

— Interviewed Steve Wozniak for a
position at Fairchild and didn’t hire
him

CACHE REPLACEMENT POLICIES

Cache Misses for loads

* On cache hit, CPU proceeds normally

* On cache miss
— Stall the CPU pipeline
— Fetch block from next level of hierarchy

— |Instruction cache miss

e Restart instruction fetch

— Data cache miss
 Complete data access

Cache replacement policy

* On a hit, return the requested data

* On a miss, load block from lower level in the memory hierarchy
and write in cache; return the requested data

e Policy: Where in cache should the block be written? (With
direct-mapped caches, there’s only one possible location:
block _address % number_of blocks in_cache)

Cache policy for stores

* Policy choice for a hit: Where do we write the data?
— Write-back: Write to cache only

— Write-through: Write to cache and also to the next lower level of the
memory hierarchy

* Policy choice for a miss

— Write-allocate: Bring the block into cache and then do the write-hit
policy
— Write-around: Write only to memory

Store-hit policy: write-through
 Update cache block AND memory

 Makes writes take longer

— e.g., if base CPI = 1, 10% of instructions are stores, write to memory takes 100
cycles
e Effective CPI=1+0.1x100 =11

* Solution: write buffer
— Holds data waiting to be written to memory

— CPU continues immediately
* Only stalls on write if write buffer is already full

Store-hit policy: write-back
-mm

000042 FE FEF 3C ..

* Only update the block in cache

— Keep track of whether each block is “dirty”
(i.e., it has a different value than in
memory)

1 001234 65 82 5C ..

0 000F3C 00 00 00 ..

* When a dirty block is replaced
(“evicted”)

— Write it back to memory

o o B O o B o =

— Can use a write buffer

e Faster than write-through, but more
complex

What value(s) will we eventually write to memory at
address OxFFFF1234? Assume a write back cache,
and the cache block for OxFFFF1234 is not evicted

until after the three writes

A. 4
St3 holds OxFFFF1234
B. 5 St holds 4
St2 holds 5
C. 6 St4 holds 6
D. We will write 4, then overwrite it >W $t1’ O($t3)
with 5, then overwrite that with 6 sw $t2, 0(5t3) Write-Back Policy:
sw St4, O($t3) Only update the block in cache

When a dirty block is evicted write it
E. None of the above back to memory

Store-miss policy: write-around

* Only write the data to memory

* Good for initialization where lots of memory is written at once
but won’t be read again soon

Store-miss policy: write-allocate

* Read a block from memory into the cache (just like a load miss)

e Perform the write according to the store-hit policy (i.e., write in
cache or write in both cache and memory)

* Good for when data is likely to be read shortly after being
written (temporal locality)

Store Policies

e Given either high store locality or low store locality, which policies might you
expect to find?

e Write-allocate: create block in cache. Write-around: don’t create block.
Write-through: update cache + memory. Write-back: update cache only.

High Locality Low Locality

Selection [ntiss Policy | Hit Policy Miss Policy Hit Policy

A Write-allocate ~ Write-through Write-around Write-back
B Write-around Write-through Write-allocate Write-back
C Write-allocate ~ Write-back Write-around Write-through
D Write-around Write-back Write-allocate Write-through

E None of the above

Common policy choices

* Write-back + write-allocate
— Dirty blocks are written to memory only when replaced
— Stores bring block into cache

— Subsequent loads/stores will cause cache hits (unless the block is
evicted)

e Write-through + write-around

— Writes always go to memory
— Cache is mostly for loads

ASSOCIATIVE CACHES

Direct-mapped Cache

Direct mapped

e Each block goes into 1 spot

Block# 01234567

Data

* Only search one entry
* Associativity =1

Tag

* What if we allow blocks to go Seareh |

into more than one spot?

Fully-associative Cache

* Allow a given block to go in any Fully associative
cache entry

* Requires all entries to be

Dat
searched at once o

* Comparator per entry
(expensive)

1
2

Seaen [TTTTTT]

Tag

n-way Set-associative Cache

Each set contains n entries
Block number determines which set

— (Block address) modulo (#Sets in cache)
Search all entries in a given set at once
n comparators (less expensive)

Set associative

Set# 0

Data

1

2

3

1

T
ag 5

Search l l

Spectrum of associativity for 8-entry cache

One-way set associative

(direct mapped)
Block Tag Data
0
] Two-way set associative
5 Set Tag Data Tag Data
3 0
1
4
2
5
6 3
7

Four-way set associative

Set Tag Data Tag Data Tag Data Tag Data
0

1

Eight-way set associative (fully associative)

Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data Tag Data

Memory addresses, block addresses, offsets

o 01 01 0111001001101 0110010100UO0T11

Block size of 32 bytes (not bits!)
16-block, 2-way set associative cache

Each address

— A (32 — 5)-bit block address (in purple and
blue)

— A 5-bit offset into the block (in green)
Block address can be divided into
— A (32 — 3 - 5)-bit tag (purple)

— A 3-bit cache index (blue)

15C9AC

OOI—‘OOOOOE
o'
oQ

OOI—‘OOI—‘OOH
o
oQ

3F2084 ..

284°77D ..

Set Associative Cache Organization

Address

3130---12111098---3210

J22 8
Tag
Index

Index V Tag Data V Tag Data V Tag V Tag Data
0
1
2

) ® ® L] ® ® ®) []
253
254
255

422 (32
(= (= (= (=

Hit

Ezl-toJ multiplex@
I

Given a 256-entry, 8-way set associative cache with a block size
of 64 bytes, how many bits are in the tag, index, and offset?

32-5-6=21
32-3-5=24
32-8-6=18
32-6-5=21
32-6-3=23

m O O
A O 00 W U
w U1 o U

Given a 256-entry, fully associative cache with a block size of 64
bytes, how many bits are in the tag, index, and offset?

32-5-6=21
32-3-5=24
32-8-6=18
32-6-5=21
32-0-6=26

m O O
o O 00 W Bk
o U1 O U

Replacement Policy

* Direct mapped: no choice

* Set associative
— Prefer non-valid entry, if there is one
— Otherwise, choose among entries in the set
— Goal: Choose an entry we will not use in the future

Replacement Policy

e Least-recently used (LRU)

— Choose the one unused for the longest time
e Simple for 2-way, manageable for 4-way, too hard beyond that

e Random

— Gives approximately the same performance as LRU for high
associativity

Associativity Example

 Compare 4-block caches

— Direct mapped, 2-way set associative, fully associative

— Block access sequence: 0, 8,0, 6, 8

* Direct mapped

Block Cache Hit/miss Cache content after access
address index
1 2
0 0
8 0
0 0
6 2
8 0

Associativity Example: 0, 8, 0, 6, 8

* 2-way set associative

Block Cache Hit/miss Cache content after access
address index Set0 Set 1
0 0
8 0
0 0
6 0
8 0

= Fully associative

Block Hit/miss Cache content after access
address

0

0| O O]

Reading

e Next lecture: More Caches!
— Section 6.4

	Slide 1: CSCI 210: Computer Architecture Lecture 33: Caches II
	Slide 3: CS History: Jerry Lawson
	Slide 4: Cache replacement policies
	Slide 5: Cache Misses for loads
	Slide 6: Cache replacement policy
	Slide 7: Cache policy for stores
	Slide 8: Store-hit policy: write-through
	Slide 9: Store-hit policy: write-back
	Slide 10: What value(s) will we eventually write to memory at address 0xFFFF1234? Assume a write back cache, and the cache block for 0xFFFF1234 is not evicted until after the three writes
	Slide 11: Store-miss policy: write-around
	Slide 12: Store-miss policy: write-allocate
	Slide 13: Store Policies
	Slide 14: Common policy choices
	Slide 15: Associative Caches
	Slide 16: Direct-mapped Cache
	Slide 17: Fully-associative Cache
	Slide 18: n-way Set-associative Cache
	Slide 19: Spectrum of associativity for 8-entry cache
	Slide 20: Memory addresses, block addresses, offsets
	Slide 21: Set Associative Cache Organization
	Slide 22
	Slide 23
	Slide 24: Replacement Policy
	Slide 25: Replacement Policy
	Slide 26: Associativity Example
	Slide 27: Associativity Example: 0, 8, 0, 6, 8
	Slide 28: Reading

